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1 Introduction

The aim of this review is to give a brief review of the statistical tools, models

and fundamental concepts that are available for financial data analysis. The ap-

proach is set up as an index of basic concepts for the quantiatively minded. This

review is inevitably very brief as both finance and statistics are large subjects.

Finance is: “the science that describes the management of money, banking,

credit, investments, and assets, basically, finance looks at anything that has to

do with money and the market”.

(http://financial-dictionary.thefreedictionary.com/finance)

Still a slightly different definition is: “A discipline concerned with determining

value and making decisions. The finance function allocates resources, includ-

ing the acquiring, investing, and managing of resources” (Harvey & Morgenson

2002)

One definition of statistics is: “The mathematics of the collection, organiza-

tion, and interpretation of numerical data, especially the analysis of population

characteristics by inference from sampling”.

(http://www.thefreedictionary.com/statistics ).

At http://dictionary.laborlawtalk.com/Statistics, the definition given is: “Statis-

tics is the science and practice of developing human knowledge through the use

of empirical data. It is based on statistical theory which is a branch of ap-

plied mathematics”. Within statistical theory, randomness and uncertainty are

modelled by probability theory. Because one aim of statistics is to produce

the "best" information from available data, for eventual policy making, some

authors consider statistics a branch of decision theory. Statistical practice in-

cludes the planning, summarizing, and interpreting of observations, allowing for

variability and uncertainty. Statistics can be seen as a probability application

where the main task is data analysis and giving general statements about an un-

known reality. Because finance is a branch of economics, the practice of deriving

estimators and tests in this context, is frequently referred to as financial econo-

metrics. Analyzing properties of estimators and tests are important subjects in

the statistical discipline.
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The discipline of finance has been expanding in the direction of mathematics

in the second half of the 20th century. Probably the first stochastic modelling

approach in finance took place by Bachelier (1900) in an attempt of formalizing

unpredictability of price movements. In physics Einstein (1905) used similar

ideas for describing unpredictability of movements of particles. It was though

not until Wiener (1923) gave a proper mathematical background to the ideas of

Bachelier and Einstein and proved that the Wiener-process was a well defined

mathematical concept. The ability to forecast in the stock market would be

very valuable if it was possible. The efficient market makes the scope for prof-

itability of forecasting very limited. Academically the problem of forecasting

prices and poor performance of experts in financial markets is treated at least

as early as Cowles (1933). The notion of unpredictability of prices is present in

the statistical literature as early as Kendall (1953). The mathematical approach

initiated by Bachelier, Einstein and Wiener in the early 20th century, was redis-

covered in a famous article by Black & Scholes (1973). The advance culminated

in the 1997 Nobel Prize of economics, when Merton and Scholes were awarded

the prize “for a new method to determine the value of derivatives”.

This development has shifted the focus of finance theory and increased its

level of mathematical sophistication. A great number of books has appeared on

use of stochastic models in finance, such as Merton (1990), Karatzas & Shreve

(1991), Hull (1993), Wilmott et al. (1995), Neftci (1996), Duffie (1996), Shiryaev

(1999), Revuz & Yor (1999), Cvitanic & Zapatero (2004),Björk (2004), etc., the

list is very long.

Progress in computer technology and telecommunications has made data

much more accessible and transferable than before. The combination of math-

ematics, data and computer power has opened the field of applied statistics to

financial applications. Methods that before were considered utopian both for

reasons of lack of data and mathematical complexity are now feasible.

The statistical discipline of linking data and models has responded to the

availability of new data and new theory. Collections of articles relating statistical

methods to finance are e.g., Maddala & Rao (1996), Hand & Jacka (1998), Chan,
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Keung & Tong (2000). Examples of recent textbooks on applied data analysis

in finance are Tsay (2002) and Zivot & Wang (2003).

At http://en.wikipedia.org/wiki/Finance the following definition is given:

“Finance studies and addresses the ways in which individuals, businesses and

organizations raise, allocate, and use monetary resources over time, taking into

account the risks entailed in their projects. Therefore, the statistical methods

for analysis of financial data are highly focused on the importance of time. This

is also the case in surveillance where the emphasis is on making timely decisions.

As the time factor is extremely important in finance, statistical methods involv-

ing time dependency are crucial for financial data analysis. Statistical models

involving time dependency rely on the probability theory of stochastic processes.

Modern finance also relies on the theory of stochastic processes. Therefore basic

knowledge of stochastic processes is essential for the quantitative financial ana-

lyst, as well as for the theoretical one. Stochastic processes can be classified by

the nature of the state space and the nature of the time-index. The state can be

continuous or discrete and the time-index can as well be continuous or discrete.

For statistical analysis the most common, and best known tool, is time-series

theory, which often refers to the case where the state is continuous, but time is

discrete.

The organization of this review is as follows. Section 2 gives a brief back-

ground of financial theory for financial markets. In Section 3 a brief review of

the principal concepts of classical linear equi-spaced time-series is given. For

the theory of finance volatility (standard deviation) of price, is important, both

for pricing and for risk management. Therefore models for second moments are

of interest. The popular discrete-time approach in modelling that is the ARCH-

class of models. Since the appearance of the ARCH model in Engle (1982), many

models based on the same idea, focusing on second-moments (variances), have

been derived. In Section 4 a brief review of some of the ARCH-family mod-

els is given. Discrete time-series models for equi-spaced time-series, ARMA,

GARCH, etc., are now easily applicable by use of widespread computer soft-

ware. The ARCH models are a special kind of non-linear/semi-linear models.
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The general class of non-linear models is very large so, therefore it is neces-

sary to limit the functional form. The general class of non-linear is simply to

large. In Section 5 some simple non-linear or semi-linear models that have been

suggested in the literature is reviewed.

The modern finance literature is dominated by continuous-time models. The

continuous-time mathematics approach offers a powerful tool for logical reason-

ing about a dynamic environment. The benefit of an empirical approach to

continuous-time statistical models is that the interpretation will correspond to a

theoretical model. In practice, however, the approach is problematic. In practice

a time-continuous pattern is never observed, there is always some discretization

involved. Even if one could obtain a continuous observation, one would have to

integrate a continuous pattern to obtain a value of the likelihood function. The

continuous-time models can be classified as continuous-path models or models

with jumps.

Bergstrom (1988, 1990) gives an historic overview on use of continuous time-

models in econometrics. Bergstrom (1990) mentions that the beginning of statis-

tical analysis of continuous-time models might be traced back to Bartlett (1946),

but the main-stream econometric literature might have missed this result, per-

haps due to the then recent discovery of treatment of simultaneous models by

Haavelmo (1943), which dominated econometric methodology for thirty years.

In recent years impressive progress has been made in statistical treatment of

discretely observed diffusion processes. Recently, statistical approaches to time-

continuous diffusion models have also become feasible. Some properties of these

models are briefly reviewed as well as approaches for estimating unknown pa-

rameters based on real, discretely observed data. An outline of some ideas is

given in Section 6.

Traditional duration-data models/transition-data/survival models analyze

jump-only processes, i.e., the process moves between a finite number of alternate

states. Transition data models and extreme value models arise naturally when

statistical aspects of financial data are analyzed. In Section 7 transition data

models are briefly reviewed.
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The interest of second moments, or equivalently, volatility (standard devia-

tion) is frequently connected with the fashionable term “risk”. The ARCH type

models deal with dynamics of second moments. A related type of risk is the

“extreme-value” analysis, the probabilistic nature of extremes. Just as in engi-

neering, catastrophes in finance take place, firms go bankrupt etc. In Section 8

some references to financial applications of extreme-value theory are reviewed.

The finance literature has recently taken steps towards memoryless processes

that are partly continuous, i.e. the jump-diffusions or Lévy processes. It is in

the nature of statistical inference that it will always be very hard to distinguish

between a jump, a steep climb and a heavy tailed distribution. Some aspects of

this and some references are given in Section 9.

This summary is written from an econometrics/statistics point of view. It

does not contain any review of the literature on technical analysis, artificial intel-

ligence or machine learning. Quantitative analysis of financial data is performed

in these fields. The author suspects that the calculations in those disciplines

are to a degree similar, but the concern about the probabilistic nature of "the

model” is less apparent, and the interpretation of results will differ from the

statistical way of thinking.

All practical analysis of financial data is evidently computer-dependent.

Data are obtained and treated electronically and a vast arsenal of optimiza-

tion methods is now implemented in the research centers of financial data an-

alysts. The numerical methods are of great variety. There exist determinis-

tic, iterative, methods, such as, Newton-type methods for maximization and

solving equations, and some stepwise methods like EM algorithm, auxilary re-

gression, double-length regression etc. Examples of simulation based methods

are MCMC(Markov-Chain-Monte-Carlo) and particle filtering. The emphasis in

this review is on the categories of practically feasible models and only to a small

degree on the technical implementation, such as, how to get output, estimates,

tests etc. for the model/data.
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2 A brief background of financial markets prob-

lems

In theoretical finance several assumptions of a ’perfect’ market are necessary

(Merton 1990, p. 477). Among these assumptions several are quite unrealis-

tic, like no transactions costs, investor can always buy or sell as much as he

wants of any asset (including borrowing or lending money) at any point in time,

market is always in equilibrium. A key assumption is the efficient market hy-

pothesis. Roughly expressed, the efficient market hypothesis states that ’all

information’ is already included in the prices, and therefore that prices should

not be predictable. This non-predictability feature is formalized in the mathe-

matical modelling by the inclusion of a non-predictable stochastic process, the

Wiener process (the Brownian motion). How this efficiency is implemented in

practice is somewhat debated. Blackwell, Griffiths & Winters (2006) give the

following classification. First, the strong-form efficiency, which states that all

information (private and public) is embedded in the security price. Second, the

semi-strong efficiency, that all public information is available in the security

price. And third, the weak-form efficiency, that all past information is included

in the security price. In academic finance at least the weak-form of efficiency is

required for arbitrage-free pricing. The logic is that if prices were predictable,

the agents would quickly discover that and give higher bids on securities that are

likely to increase in price. That kind of behaviour would eliminate predictability.

It turns out that enforcing arbitrage-free conditions in financial modelling

results in pricing functions where the variance function is a fundamental part.

Therefore the variance function is of principal interest for investment-strategy,

risk-management, etc. Surveillance of the mean-function in finance is though

not uninteresting. For example financial-inspection authorities have the role of

monitoring the possibility of insider-trading. For surveillance, therefore both

surveillance of mean and variance are of interest for surveillance in finance.
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3 Linear time-series analysis

A data-set, (x1, . . . , xT ), is a realization of set of random-variables, (X1, . . . , XT ).

The simplest case is when the random-variables are iid. The theory time-series

deals with the situation where there is a dependency structure based on the

time-sequence of the sampling. In order to obtain consistent estimates it is

necessary to assume that dependency fades away in the sense that observa-

tions far apart in time are almost independent. The mathematical term for

this property is ergodicity. As only one realization is available, some stability

property of Xt is also necessary. The theoretical concept for that is stationary,

which means that the dependency structure is invariant over time. In prac-

tice weak-stationarity is assumed for reasons of convenience. Weak-stationarity

is characterized by covariance-stationarity, i.e. the mean and auto-covariance

functions are assumed to be constant over time.

E(Xt) = µ,

E(Xt − µ)(Xs − µ) = γ(|t− s|) = γ(k), k = |t− s|.

The ergodicity assumption states that the dependence between Xt and Xs

should decrease as |t − s| increases, i.e. that random-variables very far apart

in time should be virtually independent. Several definitions of ergodicity ex-

ist, but for estimation of mean and auto-covariance it is essential to require

mean-ergodicity:

1

T

T∑

t=1

Xt
a.s−−−−→

T→∞
µ,

where
a.s−−−−→

T→∞
denotes almost sure convergence, and auto-covariance ergodicity

(see, Wei (1990)):

1

T

T∑

t=k+1

(Xt − µ)(Xt−k − µ)
a.s−−−−→

T→∞
γ(k).

If the data are assumed to be a sample from a stationary normal process all in-

formation about the process is expressed by the mean, µ and the auto-covariance

matrix ΓT . Optimal prediction is in theory easily derived from the properties of

the conditional normal distribution. If the vector X partitioned, X1 and X2,
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(future and past) as:

X =




X1

X2



 ∼ N(




µ1

µ2



 ,




Γ1 Γ12

Γ′
12 Γ2



). (1)

Then the conditional distribution of the future, X1, given the past, x2, is:

X1|X2 = x2 ∼ N(µ1 + Γ′
12Γ

−1
2 (x2 − µ2),Γ1 − Γ′

12Γ
−1
2 Γ12). (2)

Equation (2) is easily interpretable but there are technical difficulties concerning

representation and computations for a stationary process. Even if the auto-

covariance function, γ(k), was known the formula involves inverting a large

matrix. A popular representation of a stationary process is by approximating

it with an ARMA(p,q) process:

(Xt − µ) = φ1(Xt−1 − µ) + · · · + φp(Xt−p − µ) + (3)

εt − θ1εt−1 − · · · − θqεt−q.

A more compact notation by use of the backward operator, B, BXt = Xt−1, is

frequently used. Sometimes the backward operator is called the lag-operator,

L. Equation (3) is written more compactly in polynomials of the B operator.

Φ(B)(Xt − µ) = Θ(B)εt,

Φ(z) = 1 − φ1z − φ2z
2 − · · · − φpz

p,

Θ(z) = 1 − θ1z − θ2z
2 − · · · − θqz

q.

This parameterization is not unique, in the sense that another set of φ’s and θ

could generate the same auto-covariance function. Requiring invertibility, i.e.

that the roots of the polynomial Θ(z) lie outside the unit circle solves that issue.

Requiring that the roots of Φ(z) lie outside the unit circle guarantees stationar-

ity. It is also required that the polynomials Φ(z) and Θ(z) do not have any com-

mon factors. The auto-covariance function, γ(k), for a particular ARMA(p,q)

process, is a complicated function of the parameters (φ1, . . . , φp, θ1, θq, σ). It can

be calculated for example by the Durbin-Levinson algorithm, see, e.g. Brock-

well & Davis (1991). The process Xt is a filtered version of the εt process.

Sometimes the properties of an ARMA process are better visualized by means
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of spectral methods. The spectrum is defined as the Fourier transform of the

auto-covariance function,

f(λ) =
1

2π

∞∑

k=−∞

e−ikλγ(k).

The spectral density function f(λ) is an excellent tool for describing the cyclical

properties of Xt. A peak in f(λ) at λ0 indicates a cycle of length 2π/λ0. Some-

thing that is much harder to visualize in terms of the auto-covariance function.

The ARMA(p,q) representation is a flexible way of parameterizing a stationary

process. This flexibility has made ARMA models very popular in applied work,

based on the idea of approximating stationary processes by ARMA(p,q). The

seminal book by Box & Jenkins (1970) is essentially a cookbook, based on statis-

tical principles, on how to proceed from data to forecast. Box & Jenkins (1970)

extended the idea to be applicable to processes that could be transformed into

ARMA(p,q). Their recommendations were to transform the process by a vari-

ance stabilizing transform, e.g. taking logarithm, and the date differences. The

idea is to approximate a transformed version of a process by an ARIMA(p,d,q)

process:

(1 −B)dΦ(B)(Xt − µ) = Θ(B)εt.

Their approach was pragmatic rather than theoretical. It consists of steps,

the first step which they called identification, consisted of choosing a proper

variance stabilizing transform, the number of differences, d, to take, and values

of p, and q. The second step they named estimation and consisted of obtaining

estimates of the φ’s and θ’s. The third step was called diagnostics and consisted

of analyzing ε̂t = ε̂t(φ̂, θ̂). The modelling process was considered a success if

the properties of empirical residuals seemed similar to what was assumed about

the theoretical residuals, i.e. white-noise. If the diagnostic step was passed one

proceeded to the fourth and final step, the forecasting step. The forecasting

step consisted of calculating point forecast and corresponding interval forecasts.

Both the minimum-mean-square-error-prediction, XT+h and its conditional

variance, the variance of eT+h is in theory easily derived from the fundamental

results on normal models given by equation (1). Numerically it is however more

10



practical to use some recursive methods, the Durbin-Levinson algorithm, the

innovation algorithm, or use the Kalman-filter recursions or use the Cholesky

decomposition of the variance-covariance matrix (Brockwell & Davis 1991).

Since the early BJ practice progress has taken place in the numerical pro-

cedures. For the normal model an algorithm for calculating the likelihood of

an ARMA process was given by Gailbraith & Gailbraith (1974) and shortly

after a computationally efficient algorithms were given by e.g, Ansley (1979)

and Melard (1983). The Kalman-filter algorithm also offers an easy way of

calculating the likelihood value.

The approach of approximating non-stationary series with an ARIMA pro-

cess suggested the idea of a fractionally-integrated process:

(1 −B)dΦ(B)Xt) = Θ(B)εt

where d need not be an integer, see e.g. Granger & Joyeux (1980). If d is in

the interval (−0.5, 0.5) the process is stationary. The behaviour of the autocor-

relation function differs from the usual, d = 0, case where the autocorrelation

function decays exponentially:

|ρ(k)| < r−k,

and is instead the autocorrelation function decays polynomially:

|ρ(k)| < k2d−1.

One may distinguish between the case d < 0 where
∑∞

k=−∞ |ρ(k)| <∞ and the

case 0 < d < 0.5 where
∑∞

k=−∞ |ρ(k)| = ∞. Brockwell & Davis (1991) label the

former case as an intermediate-memory process and the latter as a long-memory

process. The maximum-likelihood estimation is treated in Sowell (1992) and

Beran (1995). Beran (1994) has published a detailed book on long-memory

modelling. A recent empirical investigation of the usefulness of ARFIMA, the

AR-fractionally-IMA, for macroeconomics and finance is given by Bhardwaj &

Swanson (2006).

The availability of cheap computing power and efficient algorithms for cal-

culating the likelihood function has made exact maximum-likelihood estimation

11



feasible and to a degree made the BJ scheme less formal, i.e. the identification

step, the estimation step and the principle of parsimony have essentially merged

into one.

One of the virtues of the BJ scheme was simplicity. When the BJ scheme is

generalized to the multivariate case the simplicity disappears. One representa-

tion of a multivariate ARMA model is:

Xt = Φ1Xt−1 + · · · + ΦpXt−p + εt − εt−1 − · · · − εt−q, (4)

E(εt) = 0, E(εtε
′
t) = Σ, E(εtε

′
s) = 0 t 6= s. (5)

The auto-correlation function Γ(k) = E(XtX
′
t−k) is now a sequence of matrices

so the plotting of auto-correlation function is a non-trivial matter. Equation (4)

in polynomials of the backward operator B is:

Φ(B)Xt = Θ(B)εt.

Requiring that the roots of the polynomials |Φ(z)| and |Θ(z)| lie outside the unit

circle and that the polynomials Φ(z) and Θ(z) have no common left factors are

conditions that are inherited from the univariate case. A way to get a minimal

multivariate ARMA representation is to minimize the McMillan-degree (Hannan

& Deistler 1988).

The computational complexity of multivariate ARMA models is evidently

much higher than that of the univariate case, but calculation of likelihood,

predictors, etc., is just a technicality. Multivariate extension of the Durbin-

Levinson algorithm and the innovation algorithms exist and can be programmed

in a modern programming language. State-space representation and the Kalman-

filter provide an approach that is perhaps the easiest to implement, (Brockwell

& Davis 1991; Harvey 1989, 1993; Lütkepol 1991). Another possible approach

is to consider the multivariate system as a periodic-ARMA, PARMA process,

(Lund & Basawa 1999; McLeod 1993; Pagano 1978).

The non-stationary case for multivariate is more complicated than in the

univariate case. The degree of non-stationarity can vary across coordinates. In

the univariate case the class of ARIMA(p, d, q) has proven to be class of non-

stationary models that is large enough to be interesting. BJ suggested a very
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crude method of estimating an integer value of d. Since the article by Dickey

& Fuller (1979) there has been a huge development of unit-root tests. Granger

was awarded the Nobel Prize in economics in 2003, "for methods of analyzing

economic time series with common trends (cointegration)", which is a way of

analyzing the relations between non-stationary time-series. The literature on

cointegration is now huge.

Classical time-series analysis in the ARMA-spirit is essentially about linear

filters,

Xt =

∞∑

k=−∞

ψkεt−k. (6)

The case were the input, εt, is iid-normal is completely treated in textbooks.

The literature on deviations from iid-normal is basically in two directions, a)

εt uncorrelated, but somehow dependent and b) εt independent, but the dis-

tribution not normal. One of the stylized facts on financial time series is that

their tails are heavier than would be allowed by a normal model. A simple

way to incorporate that into (6) is to assume that εt is heavy-tailed, e.g. some

t-distribution. Then Xt will be distributed as a weighted sum of independent

t-distributions, which is certainly not a t-distribution, but a rather messy com-

pound. Inference in such model is though relatively straightforward, because

the likelihood can be calculated recursively. If the input series, εt, has finite

variance, then the output series Xt will consist of a weighted sum of indepen-

dent finite variance components and might therefore look “more normal” than

the input due to central-limit-theorem arguments.

In the case of normal input, the filtered process, Xt, is also normal because

the normal family is closed under addition. For continuous random variables this

property defines the family of stable-distributions, i.e., the sum of iid variables

from the family belongs also to the family. The Cauchy distribution has also

this property. The normal distribution is the only continuous stable distribution

which has finite variance. Therefore if the input in (6) is iid stable, but not

normal, Xt does not have finite variance. Obviously, a criterion like MMSEP

(minimum-mean-square-error-of-prediction) will not make sense in such cases.

The density of the stable distributions is not available in closed form, but the

13



logarithm of the characteristic function is of the form:

log(E(eiuX)) =







iuβ − d|u|α(1 − iθ sgn(u) tan(πα/2)) α 6= 1,

iuβ − d|u|(1 + 2iθ/π) sgn(u) log(|u|) α = 1.

The interpretation of the parameters is, β indicates location, d1/α indicates

scale, θ indicates symmetry and α indicates tail behaviour. Recently algorithms

for numerically calculating the density, generating random numbers have be-

come available. (Lambert & Lindsey 1999). The method of (Lambert & Lind-

sey 1999) has been implemented in the R-package ((R Development Core Team

2005)) stable. Figure 1 shows some examples of density functions for stable dis-
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Figure 1: Examples of stable density functions.

tributions. A textbook treatment of linear-filters with infinite variance input is

given in Brockwell & Davis (1991), chapter 13.3. For more advanced treatment,

see, e.g., Hall, Peng & Yao (2002).

4 Conditional Heteroskedacity

In 2003 R.F. Engle was awarded the Nobel Prize in economics "for methods

of analyzing economic time series with time-varying volatility (ARCH)". It

became apparent that the dependency structure of a process was more than
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just the auto-covariance function. Granger (1983) enlightened that some prop-

erties of a white-noise process could be predicted. Engle (1982) analysed a

particular case and introduced the concept of Auto-Regressive-Conditional-

Heteroskedacity (ARCH) models. A simple version of ARCH is:

εt = vt

√

α0 + α1ε2t−1, (7)

with E(vt) = 0, E(v2
t ) = 1, vt ∼ N(0, 1).

By some rearranging,

εt|εt−1, . . . ∼ N(0, ht), ht = α0 + α1ε
2
t−1,

ε2t = α0 + α1ε
2
t−1 + (ε2t − ht)

︸ ︷︷ ︸

residual

. (8)

Equation (8) shows the similarity between ARCH models an AR models. The

distribution of the residual in (8) is restricted by the dynamic structure and the

fact that ε2t > 0. It is therefore, necessarily non-normal. The second moments

of εt have a non-zero autocorrelation structure but the first moments do not. A

straightforward extension of (7) is the ARCH(p):

εt = vt

√

α0 + α1ε2t−1 + · · · + αpε2t−p.

The ARCH(p) process is easily interpreted as an AR(p) process for second

moments an ARMA version of that is GARCH(p,q), generalized-ARCH:

ht = α0 + α1ε
2
t−1 + · · · + αpε

2
t−p + β1ht−1 + · · · + βqht−q. (9)

Equation (8) can be generalized and the GARCH(p,q) process, (9), can be

written as:

Φ∗(B)(ε2t − α0) = Θ∗(B)residualt

where Φ∗ and Θ∗ are polynomials. So the development of the GARCH mod-

els can easily be interpreted as a spin of from ARMA modelling for squared

processes. An AR(p) process with p large can be well approximated by an

ARMA(p, q) process with p + q small. The BJ principle of parsimony also

applies to GARCH processes and practitioners have therefore often preferred
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GARCH(1, 1) because a reasonable fit to real data by ARCH(p) usually re-

quires a large p. Figure 2 illustrates the features of models from the ARCH/GARCH

family. The process generates volatility clusters, the auto-correlation structure

in Xt is weak whereas it is clear in X2
t . Other ideas like the persistence prop-
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Figure 2: A simulated GARCH(1,1) process (top), its auto-correlation (middle)

and the auto-correlation of the series squared (bottom).

erty, i.e. unit root, a basic idea of ARIMA modelling can be incorporated in the

ARCH framework such as the integrated-GARCH, IGARCH, (Engle & Boller-

slev 1986). The simplest form is the IGARCH(1,1), which is a constrained

version of (9):

ht = α0 + α1ε
2
t−1 + (1 − α1)ht−1.

The ARIMA contains a unit root and is non-stationary. The IGARCH contains

a unit-root but can be strictly stationary, (Nelson 1990). The long-memory idea

of ARIMA, the ARFIMA has also found its way into the volatility modelling and

has been termed FIGARCH (fractionally-integrated-GARCH), (Baille, Boller-

slev & Mikkelsen 1996).

The step from a univariate model to multivariate model for a GARCH is

badly hit by the curse of dimensionality. The multivariate generalization ARCH
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refers to a n-dimensional vector, εt, which is conditionally heteroskedastic:

Ht = V (εt|εt−1, εt−2, . . .).

Defining the dynamics of the sequence of matrices Ht, analogously to the one

dimensional case results in the following recursions for the (k, l) element of Ht:

hk,l,t = ck,l +
∑

i=1,q

[
n∑

m=1

n∑

s=1

αk,l,m,s,iεm,t−iεs,t−i

]

+ (10)

p
∑

i=1

[
n∑

m=1

n∑

s=1

βk,l,m,s,ihm,s,t−i

]

.

There are some natural constraints on the parameters in equation (10) due to

the fact that Ht is a covariance matrix and therefore symmetric positive-definite.

But nevertheless, the number of parameters grows dramatically with the number

of dimensions. For a multivariate ARCH(1) model the number of parameters is

1 + n(n+ 1)/2, (Gourieroux 1997). Therefore more parsimonious versions have

been used. A variant suggested by Bollerslev (1990) is the constant-conditional-

correlation-GARCH, CCC-GARCH:

hi,i,t = ci,i + αiiε
2
i,t−1 + βi,ihi,i,t−1,

hi,j,t = ρi,jh
1/2
i,i,th

1/2
j,j,t, for i 6= j.

More constrained version exist, e.g. DVEC-GARCH, (Yang & Allen 2005).

5 Non-linear time-series models

The ARMA model is a linear-filter, i.e. the current value,Xt, is a linear function,

a weighted sum, of past values of the series, Xt−1, Xt−2, . . . and current and past

noise-values, εt, εt−1, . . .. A generalization of this would be a non-linear filter,

so that a non-linear univariate time-series, Xt can be represented as e.g.:

Xt = f(Xt−1, Xt−2, . . . , εt, . . .), where εt is some noise or, (11)

εt = g(Xt, Xt−1, . . .), or (12)

Xt = h(εt, εt−1, . . .). (13)

The function in (11) represents a mixed non-linear ARMA representation, in

a kind of non-linear AR is represented by (12) a non-linear MA in equation
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(13). All three are in a non-anticipative form, i.e. they represent Xt only as

a function of its past values and past and current εt’s. It is evidently quite

hopeless to estimate a very general function of the above form from a single

realization of a time series. Some intelligent starting point is needed as well as

sensible bounds on how complicated the function can be. A starting point is to

use h in (13) and assume that a Taylor expansion is allowed. Following a classic

monograph on the fundamentals of non-linear time series, Priestley (1991), h in

(13) is Taylor-expanded:

Xt = µ+

∞∑

i1=0

giεt−i +

∞∑

i1=0

∞∑

i2=0

gi1,i2εt−i1εt−i2 + (14)

∞∑

i1=0

∞∑

i2=0

gi1,i2,i3εt−i1εt−i2εt−i3 + · · · .

The Volterra expansion, (14) suggests that a reasonable starting point could be

a kind of bilinear model:

Xt = µ+ εt + α1εt−1 + α12εt−1εt−2 (15)

or as Granger & Andersen (1978) suggest:

Xt = εt + αεt−1Xt−2,

which have zero-autocorrelation and are therefore, not linearly predictable, but

might be non-linearly predictable. The optimal predictor for (15) is α12ε̂t−1ε̂t−2

if ε̂t is constructed recursively by:

ε̂t = Xt − α1ε̂t−1 − α12ε̂t−1ε̂t−2.

From the look of (14) it is clear that search for a parsimonious non-linear rep-

resentation of a process in the spirit of BJ for linear processes will be compli-

cated, as well as problematic, in terms of identification. Therefore the design

of non-linear time-series modelling has developed towards models that have the

ability of capturing particular stylized features of data. One such example is

the threshold-auto-regressive (TAR) model. The idea is that the dynamics of

a process Xt is different when the level of Xt is high than when it is low. A
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simple first order TAR(1) model is:

Xt =







φH,1Xt−1 + εH,t if Xt−1 ≥ d,

φL,1Xt−1 + εL,t if Xt−1 < d
.

Where φH,1, φL,1, εH,t, εL,t refer to the high-level and the low-level case, respec-

tively. Obviously generalizations to more complicated TAR are theoretically

straightforward. The practical implementation gets quickly difficult, choosing

the number of thresholds, lag-length, etc. Tong (1983) gives strategies for prac-

tical modelling, such as limiting the decision to jump to a single specific time-

lag, common for all thresholds. Tong (1983) calls this, SETAR (self-excited-

threshold-autoregressive) (Priestley 1991). Properties such as stationary dis-

tributions, auto-covariance function, properties of estimators are non-trivial,

(Jones 1978; Klimko & Nelson 1978; Tong 1983). Many modern researchers

would use computer intensive methods, such as bootstrap or simulation. The

TAR model is varying-parameter model, i.e., the parameter jumps if the series

passes a certain value. Some may find that feature unwanted and therefore

some alternatives have been developed. One version is the EAR (exponential-

autoregressive) model, a simple version of EAR(2) is:

Xt = φ1(Xt−1) + φ2(Xt−2) + εt,

φ1(Xt−1) = α1,1 + α2,1 exp(−α3,1X
2
t−1),

φ2(Xt−2) = α2,1 + α2,2 exp(−α3,2X
2
t−2).

The EAR(2) can behave very similar to an AR(2). When the characteristic

polynomial of the AR(2) has complex roots, the process tends to show cyclical

behavior. The EAR is to a degree similar to TAR but the coefficients, φ1, φ2, . . .

evolve smoothly between the minimum (α1,i) and the maximum value (α1,i +

α2,i). Therefore, the EAR can generate amplitude-dependent cycles, jump-

like behavior, limit-cycles. For more details see, e.g., Ozaki (1982) and Ozaki

(1985). Identifiability is obviously an issue, e.g. it will be difficult to estimate

α2,i and α3,i when α2,i is small and α3,i is large. The EAR is likely to capture

similar features of a series, such as the TAR. Many practitioners use AIC/BIC

criteria, or to a degree, common sense, in choosing between models. Still a
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slightly modified version is the STAR (smooth-transition-autoregressive) model.

A simple form is:

Xt = α1Xt−1 +Xt−1F (Xt−1) + εt (16)

where F is a suitable function. A possible choice of F is the logistic function

and then the model (16) is labelled LSTAR (logistic-STAR).

The above models, TAR/EAR/STAR, etc., have in common, that they

switch regimes depending on the observed time-series Xt. A related idea is to

let another process rule the regime switching. An idea is the Markov switching

regime, Hamilton (1989):

Xt =







model 1 St = 1

model 2 St = 2
,

where the state St is ruled by a Markov-chain with transition probabilities:

P =




p11 1 − p22

1 − p11 p22



 .

The modelling consists of estimating the number of states, the transition ma-

trix as well as the dynamic model in each state. Hamilton (1994) reviews some

aspects of a practical approach, estimating parameters, singularities in the like-

lihood etc.

The usual GARCH model can be thought of as a kind of linear filter of sec-

ond moments. The non-linear ideas above have been brought over to volatility

modelling. Nelson (1991) suggests that:

log(ht) = αt +
∞∑

k=1

βkg(εt−k),

in order to accommodate for the asymmetric relation between volatility, σt =
√
ht, and prices, i.e. markets react differently to negative shocks than to positive

shocks. Nelson (1991) suggest that by choosing:

g(εt) = θεt + γ(|εt| − E(|εt|)),

the series σt can be a well-behaved process, depending on the choice of g. This

turns out to be very similar to e.g. the TAR process, (Tsay 2002). A related
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version is the PGARCH (power-GARCH) mixing the long-memory property

with non-linearity:

σd
t = α0 +

p
∑

i=1

αi(|εt−i| + γiεt−i)
d +

q
∑

j=1

βjσ
d
t−j .

The PGARCH form includes many members of the GARCH family as special

cases.

The tremendous creativity in the models in this category has been driven by

the wish to represent the stylized facts of a financial market in simple ARMA-

type formulas. First and second moments of series are modelled and of course

the two are mixed, e.g., AR-GARCH, ARCH-M etc. A brief list of the ARCH

family is shown in table 1. A recent text on nonlinear time-series is Fan & Yao

(2003).

PGARCH AGARCH TGARCH IGARCH

EGARCH AR-ARCH ARCH-M BEKK

CCC FIGARCH PSD-VECH DVEC

FIEGARCH NGARCH VGARCH QGARCH

Table 1: A subset of the ARCH family .
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6 Continuous time diffusions

The field of finance has evolved strongly in the past decades. A corner-stone

element of the theory is the Wiener-process, or Brownian-motion. The Wiener-

process is a continuous-path, memoryless process. If the time-horizon is t ∈

[0, 1]:

W (0) = 0,

W (t4) −W (t3) indpendent of W (t2) −W (t1), t1 < t2 < t3 < t4,

V (W (t)|W (0)) = t,

W (t) continous with probability 1.

The process can be defined similarly for any time-interval. According to the

functional-central-limit-theorem W (t) is normally distributed. The Wiener pro-

cess is in the literature often called Brownian motion after the biologist Brown

(1827), who was describing movements he observed in his microscope. The

term Wiener-process is due to the mathematician Wiener (1923) who proved

that the process was mathematically well defined. The mathematical literature

on Wiener/Brownian process is huge.

The theory of differential equations is aimed at describing dynamics, i.e.

movement of a particle in time. Time-series models in discrete time can be

thought of as difference equations containing a stochastic term, i.e. the input

noise. Following the same spirit in the continuous-time case gives rise to the

need to define the concept stochastic-differential-equation (SDE). This is done

by defining SDE through the concept of stochastic integral. The SDE is written

as:

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dW (t). (17)

The interpretation of (17) is that it has a solution on the form:

X(t) = X(t0) +

∫ t

t0

µ(X(s), s) ds

︸ ︷︷ ︸

term 1

+

∫ t

t0

σ(x(s), s) dW (s)

︸ ︷︷ ︸

term 2

. (18)

The functions µ and σ are called trend and diffusion, respectively. The first

term in equation (18) is an ordinary Riemann-integral. The second term is a
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stochastic integral. The most commonly used concept for a stochastic integral

is the Ito integral. If the function σ was a step function which only jumped in

t1, . . . , tn = t, the Ito-integral is defined as:

∫ t

t0

σ(s)dW (s) =

n∑

k=1

σ(tk−1)(W (tk) −W (tk−1)).

The key issue here is to define the integral based on the value of σ the left

end of the interval. That way the independent increment property of W makes

formulas simpler, such as the variance:

V (

∫ t

t0

σ(s)dW (s)) =

n∑

k=1

[σ(tk−1)]
2(tk − tk−1),

all covariance terms disappear due to the independent increments of W (t) and

the forward increment feature of the definition of the integral. The definition

is then extended to functions that can be approximated by a step function so

that the Ito-integral is defined for a class of “well-behaved” functions. This

mathematical background means that (17) is just another way of writing a

stochastic integral. Another definition of a stochastic integral is the Stratonovic-

integral. Having a working definition of the stochastic integral activates a vast

mathematical machinery. In many ways the continuous-time approach is more

tractable than the discrete-time one. The dW (t)-term in (18) plays the role of

εt, i.e. the white-noise in the discrete-time models. The term dW (t) is often

called the continuous-time white-noise, even it does not exist mathematically,

it is still a useful form which refers directly to the integral. A useful property of

the Ito-integral is that it is a martingale. Another virtue of using the Ito-integral

as a definition of the stochastic integral is the practically of the Ito-lemma, if

the dynamics of X(t) is given by (18) then the dynamics of Y (t) = g(X(t), t) is

given by:

dY (t) = µ∗(X(t), t) dt+ σ∗(X(t), t) dW (t),

µ∗(X(t), t) =
[
∂g

∂t
(X(t), t) + µ(X(t), t)

∂g

∂x
(X(t), t) +

1

2
σ2(X(t), t)

∂2g

∂x2
(X(t), t)

]

σ∗(X(t), t) = σ(X(t), t)
∂g

∂x
(X(t), t).
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If g is a well-behaving process the dynamics of transformed version of the process

is also driven by, a “normal white-noise”, dW (t). This is very different from the

discrete-time case. If a discrete-time model is driven by white-noise, a function

of it is in general not driven by white noise.

Having defined the white-noise term, dW (t), in terms of the Ito-integral it is

possible to define a continuous-time linear filter, i.e., a continuous-time ARMA,

as:

Φ(D)X(t) = σΘ(D)DW (t) where D is a differential operator (19)

but because W (t) is nowhere differentiable, a convenient representation for calculations is the state-space form

X(t) = σθZ(t) (20)

dX(t) = AX(t) dt+ 1dW (t), t > 0 (21)

A =















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−φp −φp−1 −φp−2 · · · −φ1















, θ =












θ0

θ1
...

θp−1












, 1 =















0

0

...

0

1















(22)

The dynamics of the state vector is given a linear SDE which has the solution:

Z(t) = eAtZ(0) +

∫ t

0

eA(t−s)1 dW (s)

eA = I +

∞∑

k=1

Ak

k!

Standard rules for variance gives the variances of the state-vector, and as the

state-vector is the sum (integral) of normal components it is normally dis-

tributed (given Z(0) = 0):

Z(t) ∼ N(0,

∫ t

0

eAs11′eA′s ds) (23)

If the integral converges, the process is stationary, and we have an invariant

distribution. Sufficient conditions are that the real-part of the eigenvalues of A

are all negative.

As a contrast to the discrete-time case, the step from linear dynamics to

non-linear dynamics is more manageable in the continuous-time case. Many
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one-dimensional non-linear SDE are tractable. The mathematical literature on

SDE and its application to finance is huge. The mathematical conditions on the

existence of a solution of a SDE depend on the nature of the functions µ and

σ. One distinguishes between strong and weak solutions. Good mathematical

references are, Karatzas & Shreve (1991); Øksendal (1998); Revuz & Yor (1999).

Visualization of a diffusion-process can be done by simulation. The sim-

ulated process is essentially, a step function with frequent jumps, i.e. the

diffusion-process is approximated by a process that jumps at discrete time-

points, t1, . . . , tn. A well known simulation scheme is the Euler scheme, which

is simply based on substituting independent standard pseudo-normal random

variables, Zi, into to equation (18),

X(ti) = X(ti−1) + µ(X(ti−1, ti−1)∆i + σ(X(ti−1, ti−1)Zi

√

∆i
︸ ︷︷ ︸

̂dW (ti)

, (24)

∆i = ti − ti−1, V (d̂W (ti)) = ∆i. (25)

The feature V (dW (t)) = dt is reflected in the simulation by equation (25).

The quality of the simulation depends on how fine the mesh, ∆i is, as well the

complexity of the process, i.e. µ and σ. An improved version, which is based

on Taylor approximations, is the Milstein-scheme:

X(ti) = X(ti−1) + µ(X(ti−1, ti−1)∆i + σ(X(ti−1, ti−1)Zi

√

∆i

+
1

2
σ(X(t), t)

∂σ

∂x
(X(ti−1, t)((Zi

√

∆i − Zi−1

√

∆i−1)
2 − ∆i).

Kloeden & Platen (1992) give higher order approximations as well as multivari-

ate version of the approximations. These are of course only approximations. The

simulated process is constant or somehow interpolated between the time-points.

In the general case simulation is hindered due to the fact, that the transition

density is generally unknown, and therefore direct sampling from the transition

density is impossible. Beskos & Roberts (2005) and Beskos., Papaspiliopoulos,

Roberts & Fearnhead (2006) give an algorithm for sampling from the exact

transition density.

The practical situations of estimation is more complicated than in the discrete-

time case. The process is continuous, but in practical cases only discrete obser-
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vations are available. A continuous-time approach based on deriving estimators

for case that data consists of an entire path is shown in Kutoyants (1984). The

log likelihood-function of a continuously observed process is given by (26):

log(L(θ|t0, t)) = c+

∫ t

t0

µ(X(s), s)

σ2(X(s), s)
dX − 1

2

∫ t

t0

µ2(X(s), s)

σ2(X(s), s)
ds. (26)

Implementation of methods such as maximizing (26) would require dense obser-

vations. In the (usual) case of discrete observations:

x(t1), . . . , x(tn), t1 < t2 < · · · < tn,

an idea could be to simulate the pattern between observations and replace the in-

tegrals with sums. The traditional statistical approaches for seeking estimators,

method-of-moments, least-squares, maximum-likelihood and Bayesian methods

are all complicated. The existence of moments and which moments to match is

complicated. Calculation of the likelihood, L(θ), by recursively calculating the

transition density f(x(ti)|x(ti−1), using:

L(θ|x(t1), . . . , x(tn)) = f(x(t1),θ)

n∏

i=2

f(x(ti)|x(ti−1),θ),

is possible due to the nature of the process. But as closed form for the transi-

tion density are only available for some particular processes, in general, some

approximations are necessary. Some popular models are shown in table 2.

As pointed out in Duffie (1996), page 132, some of these models are special

cases of equation (27).

dX(t) = [α1(t) + α2(t)X(t) + α3(t)X(t) log(X(t))] dt+ [β1(t) + βt(t)X(t)]
ν
dW (t) (27)

Typically the parameter-space is restricted. Some of the model in table

(2) have an invariant distribution, i.e. they are stationary. It is usually easy to

decide whether a one-dimensional diffusion process has a stationary distribution.

When modelling dynamic phenomena, that are believed to have some stationary

features, some simple stationary diffusions could be used as starting points.

In some cases calculations of moments are easy. The form (18) is essentially

a way of writing the integral:

X(t) = X(t0) +

∫ t

t0

µ(X(s), s) ds+

∫ t

t0

σ(X(s), s) dW (s) (28)
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Model µ(x) σ(x) support

Wiener-process with drift α σ −∞ < x <∞

Ornstein-Uhlenbeck (Vasicek) α(β − x) σ −∞ < x <∞

Cox-Ingersoll-Ross (Square-root) α(β − x) σ
√
x 0 < x <∞

CEV α(β − x) σx 0 < x <∞

CKLS α(β − x) σxρ 0 < x <∞

Duffie Kan (1996) α(β − x)
√
σ + ρx 0 < x <∞

Brennan Schwartz (1979) αx(β − log(x)) σx 0 < x <∞

Marsch Rosenfeld (1983) αx+ βx−(1−ρ) σxρ/2 0 < x <∞

Constantinides (1982) α+ βx + ρx2 σ + ρx 0 < x <∞

Double well αx− βx3 σ −∞ < x <∞

Generalized logistic
[
(α− β) cosh(x

2 ) 2 cosh(x
2 ) −∞ < x <∞

−(α+ β) sinh(x
2 )

]
cosh(x

2 )

Table 2: Some popular diffusion processes.

Using the forward nature of the Ito-integral, the conditional expected value of

X(t)|X(t0) can be calculated by taking expectation through (28). So:

E(X(t)|X(t0)) = X(t0) +

∫ t

t0

E(µ(X(s), s)) ds (29)

Ito-lemma give the dynamics of Y (t) = X(t)2 and taking expectation again

gives:

E(X(t)2|X(t0)) =

X(t0)
2 +

∫ t

t0

[
2E(X(s)µ(X(s), s) + E(σ2(X(s), s))

]
ds

In the case when µ(x) is linear in x the first conditional moment is derived by

using Ito-lemma and solving a differential equations, e.g. if µ(x) = α(β − x)

then (29) becomes:

m(t) = E(X(t)|X(t0)) =

X(t0) +

∫ t

t0

α(β − E(X(s)|X(t0)) ds = X(t0) +

∫ t

t0

α(β −m(s)) ds,

m′(t) = α(β −m(t)), i.e. m(t) = X(t0)e
−α(t−t0) + β(1 − e−α(t−t0)).
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For some particular σ(x) the derivation of conditional second moments can be

just as simple, i.e. a question of solving a differential equation. In the general

case this approach is not feasible.

For a one-dimensional diffusion the invariant distribution is (in the case that

it exists) on the form:

f(x) ∝ 1

σ2(x)
e

∫ x

c

2µ(s)

σ2(s)
ds
.

Again this might be hard to evaluate in some cases. Mao, Yuan & Yin (2005)

give some numerical methods. When using stationary diffusion processes in

modelling the stationary distribution should reflect features to be matched with

the scientific phenomenon of interest.

Moment-based methods have their appeal because for some models mo-

ments can be calculated in closed form, even if transition probabilities cannot.

Moment-based versions are e.g. GMM, EMM, SMM and some methods based

on estimating functions. Bibby, Jacobsen & Sørensen (2004) give a review on

the use of estimating functions.

Some non-parametric, semi-parametric, partly parametric approaches have

been tried. If the existence of an invariant distribution f(x) is assumed, then the

relation between the invariant distribution, the drift function and the diffusion

function is:

d

dx
(σ2(x))f(x) = 2µ(x)f(x),

σ2(x) =
1

f(x)

∫ x

−∞

2µ(s)f(s) ds,

Aït-Sahalia (1996) suggests estimating the drift parametrically, estimating the

invariant distribution with a kernel method and then plug µ̂(x) and f̂(x) into

(30) to get a non-parametric estimate of the diffusion function σ(x). Aït-

Sahalia (1999, 2002) approximates the transition density by Taylor expanding

the Kolmogorov-forward equation, and substitutes the approximation for the

true likelihood and maximizes it numerically. For affine diffusions the charac-

teristic function is often manageable. It is possible to use numerical Fourier in-

version to derive the likelihood. An example of an estimation procedure based
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on using the characteristic function for affine diffusions is given by Singleton

(2001). Nonparametric approaches based on kernel smoothing are also con-

ceivable. Fan (2005) gives an overview of nonparametric methods in financial

econometrics.

7 Analysis of duration and transition data

A lot of financial activity consists of waiting for a particular event to occur such

as a shift of state. A principle statistical discipline of analyzing waiting time is

survival analysis. The survival time, T , the waiting time for a shift in the state

of survival is a non-negative random variable. A standard form for describing

the risk for a change of state is the hazard function, λ(t):

λ(t) = P (t < T < t+ dt|T > t) =
f(t)

1 − F (t)
,

F (t) = P (T ≤ t) = 1 − e
R

t

0
λ(s)ds, f(t) = F ′(t).

The hazard function denotes the instantaneous risk of change of state conditional

on the state up to time t. There exists extensive literature on survival analysis

where the focus is on studying the hazard of the one-way transition from life to

death, (Andersen, Borgan, Gill & Keiding 1993; Fleming & Harrington 1991).

The hazard function can in principle be any non-negative function. It should

be noted that if the integral

∫ ∞

0

λ(s)ds

is finite, then that means that there is positive probability of eternal life. When

dealing with biological data it is usually not realistic to analyse a sequence of

survival times for an individual. In sociological data it is conceivable to observe

e.g. the sequences between jail sentences for criminals but, in general there are

so few time spells that it is not fruitful to derive a dynamic structure.

Engle & Russell (1998) defined the ACD, autoregressive conditional dura-

tion model for explaining dynamics of waiting times between transactions in a

financial market. If transactions take place at time-points t1, t2, . . ., the ACD
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approach is basically:

xi = ti − ti−1,

E(xi|xi−1, xi−2, . . .) = ψi(θ, xi−1, xi−2, . . .). (30)

Equation (30) denotes the conditional expectation of duration number i and is a

function of past durations and a parameter vector θ. The conditional probability

model for Xi is supposed to be of the form:

Xi = ψiεi,

where εi is a sequence of iid variables with a parametric distribution and param-

eter φ, e.g., an exponential or a Weibull distribution. The dynamic functional

form of ψi is given by:

ψi = ω +

m∑

j=1

αjxi−j +

q
∑

j=0

βjψi−j .

The abbreviation for this type of model is ACD(m,q). There is a striking re-

semblance in the derivation of the ACD model and the derivation of the ARCH

model. As in the case of ARCH models many new abbreviations have been gen-

erated for describing the various forms of auto-correlated durations. Examples

are AACD of Fernandes & Grammig (2006) which is based on applying the idea

of Box-Cox transformation (flexible forms), to the ACD dynamics:

ψλ
i = ω + αψλ

i−1 [|εi−1 − b| + c(εi−1 − b)]
ν

+ βψλ
i−1. (31)

Equation (31) is an example of AACD(1,1). The idea is that the AACD should

contain a lot of other ACD-variants as special cases. The form is decided by

the parameters, (b, c, λ, ν). Still another way of relaxing the functional form of

the duration dynamics is e.g., the semi-parametric autoregressive conditional

proportional hazard (SACPH) model in Gerhard & Hautcsh (2002).

Lancaster (1990) gives a review of methods for duration/transition-data

analysis. The standard survival model generalizes to models with competing

risks or multiple hazards, i.e. the situation where exit from a state can occur

due to various reasons. In the competing risk model there are many waiting-time

variables, T1, . . . , Tk, but there is only opportunity to observe one:

T = min(T1, . . . , Tn).
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The case where the competing durations are independent is relatively easy,

because then the total hazard is just the sum of the competing hazard. A finan-

cial study of lender/borrower waiting times is given by Lambrecth, Perraudin

& Satchell (2003). Some effort in exploring the possibility of dependent com-

peting risks is given in Lindeboom & Van den Berg (1994). A version of the

competing risk model with possible exit to many destinations, is given a set of

hazard functions, λij describing the hazard for transition from state i to state

j, (Lancaster 1990). A typical multi-state phenomenon in finance is a rating

system, AAA, Aaa, etc. Examples of analysis of transition rates between ratings

are in Lando & Skødeberg (2002) and Bladt & Sørensen (2006). Observed mul-

tivariate durations in multiple states, e.g. bivariate a distribution (T1, T2), refer

to the process of waiting for many events. An example application to financial

data is by An, Christensen & Gupta (2003) where the pension and retirement

of spouses are analyzed. An application to financial market data is given by

Quoreshi (2006) using the analogy of count-processes and durations.

A typical characteristic of duration/transition data is censoring. The type of

censoring, functional form of the impact of regressors, the choice of probability

model, all these issues affect the choice of estimation strategy.

8 Extreme value analysis

The term risk has been frequently used in financial context in recent years. The

term “risk” can reflect many different apsects. Sometimes it seems that risk

refers to lack of certainty, sometimes volatility in a price process, sometimes it

seems to be risk for a particular event e.g., bankruptcy. The formal notion of

the statistic of interest is:

Xmax,n = max
0≤i≤n

X(i) or Xmin,n = min
0≤i≤n

X(i).

For the discrete-time case of iid data the finite-sample maximum is simply:

Fmax(xmax) = P (Xi ≤ xmax| for i ≤ n) = F (xmax)n.

The classical central-limit-theorem can be interpreted as a large sample result for

a sum of iid random variables. If a sequence of iid random variables, X1, . . . , Xn
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with E(X2
i ) < ∞, the sum converges in distribution to a normal distribution,

i.e.:

Sn =

n∑

i=1

Xi
d−→ N(an, bn), with an = nE(Xi), bn = nV (Xi).

In many statistical textbooks, in chapters on order statistics there are similar

results for the maximum (and minimum) of iid random variables. The question

is whether we have limit result for the function maximum (or minimum), just as

we have a limit result for function sum. If there exists sequences of constants,

an, bn, such that (Xmax,n−an)/bn converges in distribution to a non-trivial limit,

then the form of limiting distribution has to one of the following, (Embrechts,

Klüppelberg & Mikosch 1997; Mood, Graybill & Boes 1974):

F1(x) = I(0,∞)(x)e
−x−γ

, γ > 0, (32)

F2(x) = I(−∞,0)(x)e
−|x|γ + I[0,∞)(x), (33)

F3(x) = e−e−x

. (34)

The limiting distribution of (32) is obtained if (and only if)

1 − F (x)

1 − F (τx)
−−−−→
x→∞

τγ .

The limit distribution of (33) is obtained if and only if

F (x0) = 1 for some x0 and F (x0 − ε) < 1, for all ε > 0.

The limit distribution is of (34) if and only if

n(1 − F (bnx+ an)) −−−−→
n→∞

e−x.

The limit distribution is called extreme-value distribution and its properties are

decided by the behavior of the distribution function F in the tails. The result in

equations (32,33,34) is sometime referred to as Fisher-Tippett theorem for limit

laws of maxima and the distributions are called Frechet, Weibull and Gumbell,

respectively.

If the Xi’s form a dependent sequence results similar to CLT are available,

i.e. the dependency has to fade away with increasing time lag, A formal way of

expressing such a fadeout is the concept m-dependence. Some examples are in

Mcneil (1997), Resnick (1997) and Johansson (2003).
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Multivariate generalizations are complicated and perhaps only practical in

special situations. Starica (1999) treats the multivariate case of constant condi-

tional correlations. It is in the nature of extremes that multivariate extremes are

hard to deal with. Typical, practical statistical problems in extreme-value the-

ory are quantile estimation and tail-index estimation. Extreme values are rare

so getting an accurate estimate of a high quantile is not possible. A direct cita-

tion from Embrechts, Klüppelberg & Mikosch (1997) is: “There is no free lunch

when it comes to high quantile estimation”; they also give sample properties

of some estimators. Mikosch (2004) gives some guidelines. For more advanced

treatment of extreme-value theory see, e.g., Embrechts, Klüppelberg & Mikosch

(1997) and Resnick (1987). In the statistical package R (R Development Core

Team 2005) it is possible to do some univariate and bivariate extreme-value

calculations using the package

evd.

In recent years the approach of using copulas has become a popular tool

for representing multivariate distributions. The idea is to get a formal tool of

defining dependence between two variables. A copula is a multivariate density

function with uniform margins. Any random variable can in theory be trans-

formed to a univariate random variable by applying the univariate distribution

function to it. If a bivariate normal random variable. (X1, X2) was transformed

to have support on [0, 1]× [0, 1] by applying the univariate inverse distribution

to X1 and X2, respectively, the result consists of two uniform U(0, 1) random-

variable with a particular dependency structure. Conversely, if we have two

dependent U(0, 1) random variables, U and V , with cumulative-distribution-

function (cdf) F (u, v), and apply the inverse of a univariate normal cdf to U

and V , respectively, then we have a bivariate random variable with normal mar-

gins, but in general this bivariate random variable is not bivariate normal. The

motive is that in finance, variables may seem weekly correlated most of the

time, but when something serious happens, the catastrophy happens to both

variables. A textbook on copula methods in finance is Cherubini, Luciano &

Vecchiato (2004). Statistically speaking, when it comes to estimating copulas
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from data, it is a question of estimating a multivariate distribution. Estimation

takes either place through parsimonious parameterization or through (kernel)

smoothing where accuracy is decided by the choice of bandwidth. In the case of

multivariate extremes there is no free lunch, data will be thin and estimates will

be inaccurate. A sober view of the importance of copulas in statistical analysis

of multivariate extremes is given by Mikosch (2005)

9 Jump processes, and further topics

The popularity of continuous-time finance has generated an understanding of

the nature of diffusion processes among data-analysts. They have realized that

some of the movements that are seen in the financial markets are not likely to

be outcome of a continuous-state process. Therefore the diffusion models have

been modified to allow jumps. This calls for a definition of the nature of jumps.

In the words of Merton (1990) this is continuous-path with rare events. The idea

is to add a weighted Poisson-type process, N(t) to the diffusion.

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dW (t) + J(t) dN(t).

The function J(t) denotes the size of the jump. To be operational, it is necessary,

in addition to the Wiener process (normal-distribution), to define the probability

distribution of N(t), the event of jump and that of the jump size, J(t). For

maximum-likelihood estimation there will be identification problems that will

require restrictions on the parameter space, (Honoré 1998). Evidently the urge

for tractability will influence the model choice. Kou (1999) gives a model that

should be able to capture stylized facts, being analytically well-behaved at the

same time: “A Jump Diffusion Model for Option Pricing with Three Properties:

Leptokurtic Feature, Volatility Smile, and Analytical Tractability”. The model

is defined in equations (2.1) and (2.2) in his paper:

dS(t)

S(t)
= µ dt+ σ dW (t) + d





N(t)
∑

i=1

(Vi − 1)



 , (35)

N(t) Poisson E(N(t)) = λt,

Vi iid double exponential.
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The solution of (35). conditioned on S(0):

S(t) = S(0)e(µ− 1

2
σ2)t+σW (t)

N(t)
∏

i=1

Vi,

contains three different probability distributions, the normal, the Poisson and

the double exponential. The memoryless property of the Wiener process, the

Poisson process, and the double-exponential are helpful in deriving closed form

solution of some option pricing problems. The spirit of this model is similar

as in Merton (1976) and Merton (1990). There are many more examples of

applications of jump diffusions in finance, (Wong & Li 2006).

Another modern approach of incorporating discontinuity in continuous-time

process is the use of Lévy processes. Sato (2001) defines, L(t), the Lévy process

as:

L(t2) − L(t1) and L(t4) − L(t3) are independent if t1 < t2 < t3 < t4,

L(0) = 0,

The distribution of Lt+s − Lt is not af function of t,

P (|Ls+t − Lt| > ε) −−−→
s→0

0, ∀ε > 0,

L(t) is right continuous with left limits.

The class of Lévy processes is very large. The Poisson process and Wiener

process are both Lévy processes. In the Poisson process all movements occur

in jumps of size 1, in the Wiener process all movement is along a continuous

pattern. Eberlein (2001) gives a simple formula for representing a Lévy process

which is generated with a distribution that has finite first moments:

X(t) = σW (t) + Z(t) + αt,

where W (t) is standard Wiener process and Z(t) is a purely discontinuous

martingale independent of W (t). The formal notion of a Lévy process allows

for a formal definition of a stochastic differential equation that is driven by a

Lévy process instead of the more traditional Wiener process, e.g. an Ornstein-

Uhlenbeck type process:

dX(t) = α(β −X(t)) dt+ σ dL(t). (36)

35



Equation (36) represents a dynamic system that in finance is called the Va-

sicek model. It is conceivable to have L(t) as purely discontinuous, such that

X(t) will remain positive. That way it can be a plausible model for a dynamic

variance (or volatility). Barndorff-Nielsen & Shephard (2001) give a thorough

treatment of ideas in that spirit. There is a substantial interest in creating a

positive process for modelling the volatility process, Tsai & Chan (2005) give a

comment on how to ensure non-negativity. Marquardt & Stelzer (2005) discuss a

multivariate CARMA driven with Lévy Process. Many of the other models can

be nested within the formal framework of working with Lévy processes. Brock-

well & Marquardt (2005) treat the fractionally integrated CARMA. Brockwell,

Chadraa & Lindner (2006) derive a continuous-time GARCH process.

10 A comment on model-building

A key issue in statistical analysis is the “model”. Data is interpreted through

a model. The model is a kind of mathematical idealization of some real-world

phenomena, and the general conclusion to be drawn from data refers to that

particular model. There are several principles in designing an interesting model.

Draper & Smith (1966) give three principal categories, a) the functional model,

which explains the nature of the underlying process, b) the control model, i.e., a

model where control does not rely on full understanding of the underlying pro-

cess and c) the predictive model, which aims at giving a method for statements

about future observations. A famous phrase is “all models are wrong but some

are useful” (Box 1979), describes the situation facing the applied data analyst.

Practical choice of statistical model is mainly based on a combination of the

following, a) mathematical tractability b) some theoretical basis and c) some

functions that are likely to fit stylized features of data. A model should be plau-

sible, e.g. we do not like to get negative values from something that should be

positive. It should also be possible to interpret the model. It is preferable that

the model can explain something, and last but not least it should be possible to

reject a model if data look very incompatible to possible output of the model.
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A frequent approach in practical analysis is to employ some kind of pre-

testing. The estimation-procedure is then essentially a two-step procedure, con-

sisting of a test of a particular hypothesis and if the hypothesis is rejected, then

a particular estimation procedure is performed. For example:

θPre−test = IH0
(X)θ0 + IH1

(X)θ̂ML. (37)

In equation (37), IH0
(X) and IH1

(X) are indicator-functions of data taking

the value 1 or 0, depending on which hypothesis is supported. An early liter-

ature review is given by Judge & Bock (1978). A recent Ph.D. thesis on the

subject is Danilov (2003). Extensive pre-testing schemes have been developed.

One scheme is based on starting with a big model and try to test away model

components of minor importance. Sometimes this is labeled stepwise-backward

or general-to-specific. The system PCGETS described in Hendry & Krolzig

(2001) is an example of this. Another approach is sometimes called stepwise-

forward or specific-to-general is based on starting with a simple model and try

to include ’significant’ variables. The system RETINA Perez-Amaral, Gallo &

White (2003) is an example of this approach.

The pre-test procedure is biased, where there is a bias towards H0. It is to

be expected that this bias is beneficial, relative to say least-squares estimation,

when the truth is close to H0. It is also to be expected that biased estimation is

harmful if the truth is far from H0. It turns out that for some loss-functions it

is possible to dominate the ordinary ordinary-least-squares estimators in linear

models. Examples of such estimators are the Stein-rule estimators. An early

review is given by Judge & Bock (1978). The idea is to shrink the ML estimates

towards an a priori defined subspace of the parameter space. The pre-test strat-

egy is a kind of jump-shrinking strategy, whereas the Stein-family estimators

and ridge-regression type estimators are examples of continuous shrinkage. Tó-

masson (1986) applies these ideas to ARMA models. It is clear that how to

shrink depends on the characteristics of the application. Stein-estimators can

be derived as a kind of empirical Bayes procedure. An empirical Bayes proce-

dure is based on a Bayes-estimator where parts of the prior are estimated from

data. A later review is given by Saleh (2006). Many practitioners now do this
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by minimizing the AIC or the BIC.

AIC = −T l(θ̂) + k,

BIC = −T l(θ̂) +
k

2
log(T ).

Where T is the number of observations, l(θ̂) is the log-likelihood evaluated at the

ML-estimate and k is the number of estimated parameters. For linear models

the AIC behaves similar to a pre-test estimator with a fixed rejection level,

whereas the BIC behaves similar to pre-test estimator where the rejection level

depends on the sample size.

11 Summary and discussion

The aim of financial data analysis is to make inference based on data. Typically

data consist of a single realization of a time-series. Stationarity and ergodicity

are necessary for obtaining consistent estimates. The linear-normal discrete-

time model is the most widely used and best understood model, Univariate

ARMA, or multivariate, VARMA, regression based-variants, ARMAX, where it

is allowed to condition on some explanatory variables all belong to that class.

Common to those is that, prediction, missing data, systematic sampling, cal-

culation of likelihood, etc., most treatments of interest are possible by using

recursive algorithms like the Kalman-filter. The ARMA is a linear filter. An

important feature of the linear filter is, that if the input is normal, then the

output is also normal. If the input to a MA process is a sequence of iid stable

distributions then the output is also stable. The normal distribution is the only

stable distribution with finite variance. In general the closed form of the density

of a stable distribution is unknown, but in some cases the characteristic function

can be written down. There exist computer programs for simulating a sample

from stable distributions. Numerical methods of the inverting the Fourier trans-

form can be used to obtain the likelihood function, that then can be numeri-

cally maximized. Even quantile-regression and simulation based methods could

be used. In many dimensions the situation is more complicated. There exist

methods for multivariate stable distributions, but the computational aspect is
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difficult. When the input to a linear filter is a finite variance non-normal noise,

then the output is not normal, but due to central-limit-theorem type arguments,

the output is “more normal” than the input. In many applications, it is nat-

ural to assume that the level of a series is much more normal, than the series

of innovation. Assuming some parametric form of the distribution of innova-

tions makes it possible to calculate the likelihood function recursively, estimate

parameters, perform tests, etc. The usual ARMA model has an exponential

decaying autocorrelation function. The ARFIMA is a way of allowing slower

decay of the autocorrelation without abandoning the stationarity assumption.

Doing constructive non-linear modelling requires a firm idea of the form of

nonlinearity, e.g., a process jumping in first or second moments. The ARCH-

family aims at modelling second moments of a process by applying the auto-

regressive concept to the second moments of a measured process. The distribu-

tional properties are somewhat complicated. The general multivariate ARCH is

extremely complicated. Many ideas of ordinary time-series, threshold models,

long memory etc. have found their way to the ARCH literature. As an exam-

ple, in ARCH-M and AR-ARCH models both the dynamics of first and second

moments are modelled.

The continuous-time models based on the Wiener-process have a mathemat-

ical appeal, and many models can be motivated by theory, e.g., pricing methods

based on no arbitrage. The univariate diffusions may also have a stationary

invariant distribution that can be interpreted in a real world context. A feature

of the univariate diffusion model is that it can combine short-term dynamics

and long-term equilibrium into one formula. High dimensional diffusion process

have in common with the multivariate non-linear discrete-time models that they

are hard to visualize and in practical cases it is necessary to have a good idea

about the nature of the functional relationship between variables. For a high-

dimensional diffusion system the issue of an invariant stationary distribution is

no longer simple, both on its existence and on how to find it in case of existence.

In the continuous-time discrete-state-space, any positive random-variable

can play the role of a waiting time (duration) for a shift between states. The in-
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terpretable form of the distribution of the waiting-time is the hazard function.

Monitoring the hazard-function over time mounts to monitoring the risk for

change of state. The hazard rate itself can be thought of as a positive stochas-

tic process, with a dependency structure over time and possibly a function of

external regressors.

The extreme-value theory is evolving, but even if multivariate models become

computationally tractable, their usability will be limited by lack of data.

Some data-analysts have found that the elegant mathematical idealization

of the diffusion process does not give a realistic picture of what is happening in

financial markets. Stylized facts as the volatility smile, etc. have led researches

to work with modifications such as jump diffusions and Lévy-driven stochastic

differential equations.

When time-series are analysed it is of importance to understand the source

of the data, e.g. whether we have stock-data or flow-data. A lot of the models

in the literature focus on the return data in a financial market. Trading data

consist of time, price and volume.

In the author’s mind, the following are most important building blocks for

surveillance of time-dependent data. First the linear-filter with normal input.

Then an understanding of the importance of the distribution. The diffusion

models are an elegant approach of linking theory and data. The theory of diffu-

sion models can give good motivation for a choice of a linear model. The univari-

ate extreme-value theory is reasonably simple and will give good approximation.

Multivariate extreme-value model will require judgment and parsimonious pa-

rameterization. The continuous-time models driven with Lévy process have not

yet reached the practitioners, so for a while they will be doing ad-hoc jump dif-

fusion models. The ARCH models have been around for some time. Academics

and practioners have built up experience on their benefits and drawbacks. Their

future is dependent on the emerge of realistic alternatives. Starica (2004) has

raised some questions about their ability to cope with short term properties and

long term properties of financial time series. His criticism is roughly that even

though the ARCH-type model can capture some short term volatility dynamics,
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it comes at the price of overestimating long term variance. The practitioner has

always to choose a model that serves a certain aim. The choice of model is a

compromise of its simplicity and its ability to capture important features of real

life.
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